Oddysey+: an alternative route towards hi-res VR

Samsung Odyssey+: going beyond the nasty grid of the SDE, and into something nicer — apparently.

N.B: This blog entry is in Matrise’s category “Lights”, which holds more technical, often smaller posts, that concern actual and recent events. These entries stand out from other entries at Matrise, which are often more conceptual, ideal and philosophical.  You can read about Matrise here.

This week, Samsung gave notice on their new Windows Mixed Reality (WMR) Headset, the Samsung Odyssey+. Priced very reasonably at $500, like it’s predecessor the Samsung Odyssey, the Head-Mounted Display (HMD) is a very attractive option for those who value high resolution in HMDs (and who doesn’t — it is obviously a desirable trait to have a greater fidelity of the virtual world!) The market has also shown its hunger for high-resolution displays, which the Kickstarter for the Pimax 8K and 5K HMD’s have shown. When on the topic of hi res displays, resolution strumpets should also check out StarVR, a high-res 210-degree Field of View HMD with integrated eye tracking to provide foveated rendering, which can be especially fruitful with that intense FOV. Digression aside — the Odyssey+ is now already for sale in the US, and in this entry we will discuss why it can be an alternative way to experience a higher resolution.

New Features

The Odyssey+ features the same high resolution of 1400 * 1600 per eye as its predecessor. For reference, this is the same resolution as found in the HTC Vive Pro which cost far more (priced from $1098 — $1399 with two controllers and base stations). Unlike the Vive Pro, however, the Odyssey+ features inside-out tracking similar to what is used in other WMR HMD’s, and also the upcoming Oculus Quest. None of this is any news, however, as all of this could equally be said of the original Odyssey. The new feature they are releasing, which makes this a particularly HMD, is a technology they have called ‘Anti SDE’ — that is, a technology that seeks to eliminate the ‘Screen Door Effect‘ experienced in most HMD’s today.

An illustration by Samsung that attempts to illustrate the difference between the Odyssey and the Odyssey+.

Screen Door Effect

The screen door effect occurs when a user is to perceive the physical space or room between the pixels themselves.  This is of course not ideal for realism, as it becomes apparent that what you are viewing is a screen. The new Odyssey+ features a technology that diffuses the light from the pixels in between the pixels, to eliminate the SDE. Their press release stated:

“Samsung Anti-SDE AMOLED Display solves SDE by applying a grid that diffuses light coming from each pixel and replicating the picture to areas around each pixel. This makes the spaces between pixels near impossible to see. In result, your eyes perceive the diffused light as part of the visual content, with a perceived PPI of 1,233PPI, double that of the already high 616PPI of the previous generation Samsung HMD Odyssey+ [sic].”

RoadToVR report that they suspect this is the technology that Playstation VR has used in their own HMDs. The Playstation VR, with a resolution of only 1080p on the eyes combined, has surprisingly little SDE — which has made me prefer the display to the Vive regular or Oculus, albeit the tracking and computing power is vastly inferior. I’m therefore eager to see how this would work on a HMD with a lot more of the pixels.


Technologies such as low pixel persistence modes, asynchronous timewarp and foveated rendering are all genius technologies that enables perceived higher refresh rates than what our computers are capable of, some of which are indispensable especially for mobile VR. Anti-SDE technology may be yet such another technology, that may make it not so necessary to have 16K displays or whatever for VR to be perceived as very close to real human sight. That being said, although Samsung claims that their new HMD have a perceived PPI (pixels per inch) of 1233, it will naturally not offer the same sharpness of clarity as an actual 1233 ppi display would. The extra 50% potential increase in “perceived ppi” is only replicating, or diffusing, the already-existing pixels. Still, the tech is very welcome, and HTC also has something to learn from the way Samsung prices their products. Customers may now find a whole lot more value for their money in Samsung, and this comes from someone who already owns a Vive Pro. For those considering doing the purchase, it should be noted that the tracking is not as good as in the HTC Vive (Pro), but depending on your needs it may be more than good enough.

Apple, Mac and Virtual Reality

N.B: This blog entry is in Matrise’s category “Lights”, which holds more technical, often smaller posts, that concern actual and recent events. These entries stand out from other entries at Matrise, which is often more conceptual, ideal and philosophical. Lights entries need not be very related to VR, though they will always be related to computer science. You can read about Matrise here.

Apple has never created computers capable of much graphical power. Although Mac’s are often preferred by those working with media applications for video and photo editing, etc., these kind of operations rather need a good CPU rather than GPU. This means that the Mac has never been a good candidate for gamers, who require heavy graphical power to run their games. Unfortunately, this bitter ripple effect of Mac’s crappy GPUs, also extends to VR support. As the Mac has not really been a candidate for good gaming, Apple has been left out of the loop by HTC Vive, Oculus, etc., simply because none of their machines would fit the minimum requirements of running VR.

So although the choice to not try to stuff a GTX 1080 ti into a Macbook has secured its ability to look pretty and slim it has been dissapointing for developers and VR enthusiasts with a fondness for the Mac OS X.

External GPUs for Mac

Last year, Apple revealed that their new operating system MacOS High Sierra would take steps to support VR on mac. As part of this, Steam VR for Mac was released — and support for external Graphical Processing Units (eGPUs) was added as well. Mac’s had unfortunately always have had terrible GPUs relative to their PC equivalents, which has limited their use for gaming- and VR purposes. Though this has secured the Macbook’s ability to look pretty and slim, it has been dissapointing for developers with a fondness for the Mac operating system.


The latest Macbook Pro series, for instance, has four slots for Thunderbolt 3. Now, the new Thunderbolt 3 support transfer speeds up to 40Gbps, which is significantly higher than the cables connecting your Mac to your internal GPU. This has opened the possibility of using the slim, pretty laptop for lectures, meetings or writing at home — all the while being possible to augment the same laptop to a graphical beast while coupling in the eGPU. You bring the light parts, and leave the heavy ones.

The Sonnet eGFX Breakaway Box for coupling graphics card externally via a Thunderbolt 3 port. In Matrise’s eGPU, we currently host an AMD Radeon RX 580 “Sapphire”. This does a good job at supporting the HTC Vive in a Macbook Pro 15.

In the fall of 2018, on the introduction of their new eGPU support, Apple partnered up with Sonnet to sell eGPU cards with a Sonnet cooling chassis from their Apple Store. As the support for eGPUs were still in beta, Apple only sold the eGPUs to registered apple developers. Matrise bought one, obviously, as this opened up for VR development, and testing, at the Mac.

In the beginning (the beta stages), the support for this was decent, but slightly annoying. Everytime you plugged in the eGPU you had to log in and out of your account — and sometimes there were trouble to get the screens connected. For the last months, however, the support feels more solid, with an icon in the menubar that can be used to eject the eGPU. You no longer have to log out everytime to connect it, which simplifies the workflow of those who use this to power , say, one 4K screen and another WQHD display at their work station.

The Office. Apart from VR development, the eGPU is useful in giving graphical power to external monitors, at the same time as providing electricity. For this setup of two >HD screens, only one Thunderbolt cable is used.

Apple and VR

Although Mac users now have the possibilities that come with increased graphical power — this does not mean that VR and Apple is a very great match yet. They have, however, lately opened their eyes to the fact that they need to support developers of this new medium. Last month they introduced their new MacOS “Mojave”, of which “Dark Mode” we discussed in our previous “Lights” entry. What is perhaps more important, however, is that the new Mac OS Mojave would have plug-and-play support for the new HTC Vive Pro (which Mac users now luckily can actually use thanks to the eGPU support). Matrise has ordered a HTC Vive Pro Kit, and will post a performance test using an eGPU in Mojave when it arrives.

The HTC Vive Pro is to receive plug and play-support in the new Mac OS “Mojave”

Although now Apple with their Mac’s have the technical solutions that make it possible to create and view VR in the same way that normal Windows PC’s have, this does not mean that Apple’s Mac stand equal before the task. The outcome of long years where Mac’s would not really be able to play any VR games still stand, and there are therefore very few games that bring support for Mac users. Hopefully this will change in the future, now that Apple at least actually plans the road ahead to be friendlier rather than hostile towards the technologies.

Modular Computing
What is an interesting in the way we see these eGPUs work, is how this kind of modular computing may be the future for laptops. Stationary computer parts have the benefit that they can be as big as they need to be, which reduces the cost of the labour of fitting these components into thin laptops. Scenarios could be imagined where it is normal to have a strong GPU and/or even CPU at home and at work, along with some monitors, to augment your computing once you are there — while always keeping the base parts (your laptop) in your bag to go. This workflow may remind us of the new Nintendo Switch — which can change from console to portable by simply removing the necessary parts and thus “switching” to portable.

What may be even more convenient than modular computing, we can admit, may be cloud computing. When web transfer speeds finally turns good enough in the future, we could upload all our computing into a queue in the sky, to be performed by some quantum computer centres in a desert somewhere… Probably.

What do you think of Apple and VR? Could you imagine the modular computing scenario working in your everyday life? Please comment below.

Mojave: Dark Mode in new MacOS

Impatient? Go to end of post to view pictures of the Dark Mode.

N.B: This blog entry is in Matrise’s new category “Lights”, which holds smaller posts that concern actual and recent events. These entries stand out from other entries at Matrise, which is often more conceptual, ideal and philosophical. Posts from the other categories can be found in the menu. You can read about Matrise here.

At yesterday’s Apple Worldwide Developer Conference (WWDC), Apple introduced several new features for their operating systems. We could have discussed their new Augmented Reality (AR) format, which they have agreed upon along with Pixar and Adobe, or that their ARKit now allow for sharing AR between devices, basically enabling “multiplayer”. We are, however, instead going to cover a less significant, but warmly welcome feature: Dark Mode in MacOS “Mojave”. This is great news for those who have had to resort to dirty hacks to make their Mac’s display darker colours. Never again.

iMac Pro with the Space Gray accessories.

Apple has always been very silvery and white in colours. My interest and addiction to their operating systems personally, has been in spite of this. In 2016, however, we saw a change in this with Apple’s release of their new Macbooks available in “Space Gray”. This year, the iMac Pro was also released in this darker colour — which included the Magic- keyboard, trackpad, and mouse as well. Initially, Apple stated that these accessories would only be available to those purchasing an iMac Pro (which cost a terrifying 5K USD) — however, these were made available for mere mortals in February this year.

On the software side — Apple has previously offered darker displays through their Accessibility options. This, however, has only been through inverting the colours. The inverting also had negative side effects on pictures, icons and other colours than white, which made Apple release a “Smart Invert” feature for iOS, that neglected pictures, etc. They have not yet introduced such a feature for Mac OS, which makes this dark mode very welcome indeed. Also — the “smart invert” feature were never a true dark mode, as dark modes features shades of gray as well – not just black.

Dark Mode
The feature we will discuss in this entry, is another one of Apple’s steps into the darker features: the Dark Mode in the new MacOS “Mojave”. The OS is being released this fall in sept. or oct., but registered Apple Developers have access to the beta, which features dark mode as default. The screenshots we feature here at Matrise, have been obtained from our access to the beta.



App store



Apple music / iTunes

System preferences

What do you think of the new Dark Mode?

Feel free to comment below.